Polyester biomaterials play a crucial in vascular surgery, but suffer from unspecific protein adsorption, thrombogenicity, and inadequate endothelial cell response, which limit their success. To address these issues, we investigated the functionalization of polyester biomaterials with antithrombogenic polysaccharide coatings. A two-step and water-based method was used to coat cationized polycaprolactone with different sulfated polysaccharides (SPS), which resulted in long-term stability, tunable morphology, roughness, film thickness, chemical compositions, zeta potential, and water content.
View Article and Find Full Text PDFIn an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function.
View Article and Find Full Text PDFBackground And Purpose: Pulmonary arterial hypertension (PAH) is a progressive disease in which chronic membrane potential (E) depolarisation of the pulmonary arterial smooth muscle cells (PASMCs) causes calcium overload, a key pathological alteration. Under resting conditions, the negative E is mainly set by two pore domain potassium (K) channels, of which the TASK-1 has been extensively investigated.
Experimental Approach: Ion channel currents and membrane potential of primary cultured human(h) PASMCs were measured using the voltage- and current clamp methods.