We examined changes induced during ischemia-reperfusion on myocardial metabolism and function by oxygenated warm cardioplegia (CP) and ischemic preconditioning (IP). The postischemic hemodynamic recovery was comparable and significantly better in IP and CP groups, than in untreated hearts (e.g.
View Article and Find Full Text PDFThis study examined the hypothesis that preconditioning can decrease postischemic oxidative protein damage. Isolated rat hearts were subjected to 25 min of normothermic global ischemia followed by 45 min of reperfusion. These were compared with hearts pretreated with 20 microM nicorandil or preconditioned with two cycles of ischemia.
View Article and Find Full Text PDFExposure to a short ischemic period (ischemic preconditioning, IP) will protect the heart from damage following a subsequent longer ischemic episode. The aim of the study was to test whether IP is cardioprotective in the setting of repeated ischemia-reperfusion cycles. Thus, Langendorff-perfused hearts, exposed to IP, were subjected to three consecutive ischemia-reperfusion (10/15 min) cycles.
View Article and Find Full Text PDFObjective: A study of the protective efficiency imparted by intermittent warm blood cardioplegia (WBCP) using perfused rat heart model.
Methods: Hemodynamic parameters were monitored simultaneously with metabolic changes in high-energy phosphates using 31P-NMR spectroscopy. Following 30 min perfusion with Krebs-Henseleit (KH) buffer, all hearts were arrested for one hour (G1 and G2) and than reperfused with KH for 30 minutes.
The influence of the binding of the high-affinity inhibitor, 4-methylbenzenesulfonamide, to the active site of bovine carbonic anhydrase B was studied by 15N- and 13C-NMR spectroscopy. The rotational correlation time dependence on temperature and concentration of the complex was determined by time-resolved fluorescence depolarization measurements. Our experiment provides evidence that the stoichiometry of the interaction of 4-methylbenzenesulfonamide with carbonic anhydrase B is 1:1 and the inhibitor is bound in anionic form.
View Article and Find Full Text PDF