Publications by authors named "A Olano"

In order to know the catalytic activities of the disaccharidases expressed in the mammalian small intestinal brush-border membrane vesicles (BBMV) high concentrated solutions of sucrose, maltose, isomaltulose, trehalose and the mixture sucrose:lactose were incubated with pig small intestine disaccharidases. The hydrolysis and transglycosylation reactions generated new di- and trisaccharides, characterized and quantified by GC-MS and NMR, except for trehalose where only hydrolysis was detected. In general, α-glucosyl-glucoses and α-glucosyl-fructoses were the most abundant structures, whereas no fructosyl-fructoses or fructosyl-glucoses were found.

View Article and Find Full Text PDF

Enzymatic transgalactosylation, in different concentrated carbohydrate solutions, was investigated using brush border membrane vesicles (BBMV) from the pig small intestine. When lactulose was incubated with BBMV, the hydrolytic activity of the enzyme towards the disaccharide was observed to be very low compared to that towards the lactose, but the linkage specificity β-(1 → 3), previously observed in lactose solutions, was not significantly affected. As in the case of lactose, lactulose transgalactosylation by BBMV synthesizes the corresponding 3'-galactosyl derivative (β-Gal-(1 → 3)-β-Gal-(1 → 4)-β-Fru).

View Article and Find Full Text PDF

This work highlights the utility of brush border membrane vesicles (BBMV) from the pig small intestine as a reliable model for gathering information about the reaction mechanisms involved in the human digestion of dietary carbohydrates. Concretely, the elucidation of the transgalactosylation mechanism of pig BBMV to synthesize prebiotic galacto-oligosaccharides (GOS) is provided, unravelling the catalytic activity of mammalian small intestinal β-galactosidase towards the hydrolysis of GOS. This study reveals that pig BBMV preferably synthesizes GOS linked by β-(1 → 3) bonds, since major tri- and disaccharide were produced by the transfer of a galactose unit to the C-3 of the non-reducing moiety of lactose and to the C-3 of glucose, respectively.

View Article and Find Full Text PDF

Lactulose-derived oligosaccharides (OsLu) are prebiotic galactooligosaccharides (GOS) beneficial for human health including immunomodulatory properties; however, the molecular mechanism is unclear. OsLu produced by enzymatic synthesis can be purified with Saccharomyces cerevisiae (OsLu-Sc). We show that this purification introduces yeast-derived proteins reactive to Dectin-2, an innate immune receptor for fungal polysaccharides.

View Article and Find Full Text PDF