The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one.
View Article and Find Full Text PDFProduction yields of single- hypernuclei from simulated peripheral annihilations of antiprotons after capture on various target nuclei are reported. The initial annihilation process and the production of excited hypernuclei are estimated within the GiBUU transport framework, while their deexcitation process is treated with the ABLA++ code. The yield of excited hypernuclei range from 0.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2024
The structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.
View Article and Find Full Text PDFThe cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150 MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations.
View Article and Find Full Text PDF