Publications by authors named "A Oanta"

Two-dimensional covalent organic frameworks (2D COFs) containing heterotriangulenes have been theoretically identified as semiconductors with tunable, Dirac-cone-like band structures, which are expected to afford high charge-carrier mobilities ideal for next-generation flexible electronics. However, few bulk syntheses of these materials have been reported, and existing synthetic methods provide limited control of network purity and morphology. Here, we report transimination reactions between benzophenone-imine-protected azatriangulenes (OTPA) and benzodithiophene dialdehydes (BDT), which afforded a new semiconducting COF network, OTPA-BDT.

View Article and Find Full Text PDF

Interrogating the stacking of two-dimensional polymers (2DPs) as a function of chemical composition is important to leverage their properties. We explore the dependence of 2DP crystallinity and porosity on variable amounts of zwitterions contained within the pores and find that high zwitterion loadings consistently diminish 2DP materials quality. A competition between disruptive zwitterion electrostatic forces and alkyl stabilization directs the stacking order of each 2DP and demonstrates the contrasting effects of side chain composition on 2DP crystallinity and porosity.

View Article and Find Full Text PDF

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by -doping naphthalene diimide subunits with varying amounts of CoCp and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy.

View Article and Find Full Text PDF

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp ).

View Article and Find Full Text PDF

We present a wide range of reactivity studies focused on the rhenium(V) oxo imido complex (DippN)(O)Re(BDI) (, Dipp = 2,6-diisopropylphenyl and BDI = ,'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). This complex, which was previously shown to possess a highly polarized Re oxo moiety, has proven to be a potent nucleophile and a valuable precursor to a variety of rare structural motifs in rhenium coordination complexes. For example, the Re oxo moiety of undergoes [2 + 2] cycloadditions with carbodiimides, isocyanates, carbon dioxide, and isothiocyanates at room temperature.

View Article and Find Full Text PDF