J Recept Signal Transduct Res
March 1997
The rat vascular smooth muscle cell (VSMC) line A10 (ATCC CRL 1476) was stably transfected with a human c-fos promoter-driven luciferase reporter gene to monitor thrombin receptor activation and subsequent induction of c-fos expression. Selective activation of the endogeneous thrombin receptor by the thrombin receptor activating peptide (TRAP1-6), SFLLRN, is shown here to result in a significant transient increase of intracellular [Ca2+], dose-dependent induction of c-fos promoter-mediated luciferase activity, and stimulation of DNA synthesis. These data demonstrate that A10 cells and reporter line derivatives thereof possess a functional thrombin receptor very similar or identical to that previously described.
View Article and Find Full Text PDFDNA amplification of the helper-dependent parvovirus AAV (adeno-associated virus) can be induced by a variety of genotoxic agents in the absence of coinfecting helper virus. Here we investigated whether the origin of AAV type 2 DNA replication cloned into a plasmid is sufficient to promote replication activity in cells treated by the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). A pUC19-based plasmid, designated pA2Y1, which contains the left terminal repeat sequences (TRs) representing the AAV origin of replication and the p5 and p19 promoter but lacks any functional parvoviral genes is shown to confer replication activity and to allow selective DNA amplification in carcinogen-treated cells.
View Article and Find Full Text PDFWe studied the effects of helper-dependent parvovirus AAV [adeno-associated virus] type 2 on carcinogen-inducible resistance to methotrexate (MTX) and adriamycin (ADR) in Chinese hamster ovary cells. Both types of drug resistance were monitored by determination of the number of drug-resistant colonies normalized for the respective value of plating efficiency under non-selective conditions. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) drastically enhanced the frequency of resistance to MTX and ADR.
View Article and Find Full Text PDFChemical compounds can cause amplification of specific DNA sequences. DNA amplification may result in an enhanced production of gene products which help cells to cope with the chemicals. This may lead to a resistance of the cells toward the agent.
View Article and Find Full Text PDFWe studied DNA amplification of helper virus-dependent parvoviruses [adeno-associated virus (AAV)] following genotoxic treatment of a number of mammalian cell lines from different species including primary, immortalized, and tumorigenic cells. All cell lines, either infected with AAV or transfected with parvoviral DNA, readily amplified AAV DNA in the absence of helper virus following treatment of cells with a wide variety of genotoxic agents like chemical carcinogens, UV, heat shock, and metabolic inhibitors of DNA replication or protein synthesis. In addition, we show that in the SV40-transformed Chinese hamster cell lines CO60 and CO631 carcinogen-induced AAV DNA amplification may result in a complete AAV replication cycle giving rise to infectious AAV progeny.
View Article and Find Full Text PDF