Publications by authors named "A O Stepnov"

Biocatalytic degradation of non-hydrolyzable plastics is a rapidly growing field of research, driven by the global accumulation of waste. Enzymes capable of cleaving the carbon-carbon bonds in synthetic polymers are highly sought-after as they may provide tools for environmentally friendly plastic recycling. Despite some reports of oxidative enzymes acting on non-hydrolyzable plastics, including polyethylene or poly(vinyl chloride), the notion that these materials are susceptible to efficient enzymatic degradation remains controversial, partly driven by a general lack of studies independently reproducing previous observations.

View Article and Find Full Text PDF

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface.

View Article and Find Full Text PDF

The relationship between government and university medicine in the context of the development of the Asian "colonial" periphery of Russia in the late imperial period are studied. It is concluded that these relationship, the manifestations of which were most pronounced in the period of the fight against epidemics, are not quite standard from the point of view of model of the classical relationship between power and knowledge in the colonial context of European maritime empires. This is connected mainly with the social portrait of the university intelligentsia, with the peculiarities of their professional socialization, which led to the fact that in Siberia they broadcast the experience of the European metropolises, rather than the colonies.

View Article and Find Full Text PDF

A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown.

View Article and Find Full Text PDF