Human papillomavirus (HPV) is a double-stranded DNA virus that infects cutaneous and mucosal epithelial cells. HPV replication initiates at the origin (ori), located within a noncoding region near the major early promoter. Only two viral proteins, E1 and E2, are essential for replication, with the host cell contributing other necessary factors.
View Article and Find Full Text PDFThe genome of human papillomaviruses (HPVs) encodes the E1 replication factor, whose biological activities are regulated by cellular protein kinases. Here, the phosphorylation pattern of the E1 helicase of oncogenic mucosotropic HPV18 was investigated both in vitro and in vivo. Four serine residues located in a short peptide within a localization regulatory region were found to be phosphorylated in both experimental settings.
View Article and Find Full Text PDFCutaneous human papillomavirus type 5 (HPV5) belongs to the supposedly oncogenic β-HPVs associated with specific types of skin and oral cavity cancers. Three viral proteins, namely, helicase E1 and transcription factors E2 and E8^E2, are master regulators of the viral life cycle. HPV5 E2 is a transcriptional activator that also participates in the E1-dependent replication and nuclear retention of the viral genome, whereas E8^E2 counterbalances the activity of E2 and inhibits HPV transcription and replication.
View Article and Find Full Text PDFThe life-cycle of human papillomaviruses (HPVs) includes three distinct phases of the viral genome replication. First, the viral genome is amplified in the infected cells, and this amplification is often accompanied by the oligomerization of the viral genomes. Second stage includes the replication of viral genomes in concert with the host cell genome.
View Article and Find Full Text PDFSeveral types of widespread human papillomaviruses (HPVs) may induce the transformation of infected cells, provoking the development of neoplasms. Two main genera of HPVs are classified as mucosatropic alphapapillomaviruses and cutaneotropic betapapillomaviruses (α- and β-HPVs, respectively), and they both include high-risk cancer-associated species. The absence of antiviral drugs has driven investigations into the details of the molecular mechanisms of the HPV life cycle.
View Article and Find Full Text PDF