Publications by authors named "A O Peshkova"

Actin is an essential component of the cytoskeleton in every eukaryotic cell. Cytoplasmic β-and γ-actin are over 99% identical to each other at the protein level, but are encoded by different genes and play distinct roles in vivo. Blood cells, especially red blood cells (RBC), contain almost exclusively β-actin, and it has been generally assumed that this bias is dictated by unique suitability of β-actin for RBC cytoskeleton function due to its specific amino acid sequence.

View Article and Find Full Text PDF
Article Synopsis
  • The spiny mouse exhibits the ability to heal wounds without scarring, which may be linked to unique features of its blood and clotting mechanisms.
  • Compared to Balb/c mice, spiny mice showed stronger blood clots, faster tail bleeding times, and higher levels of clottable fibrinogen, indicating superior hemostatic capabilities.
  • Histological analysis revealed that spiny mouse clots were densely packed with fibrin and had better plasma clot stiffness, suggesting that these characteristics could enhance their wound healing and regenerative abilities.
View Article and Find Full Text PDF

The study, carried out as part of the International Cooperative Program on Effects of Air Pollution on Natural Vegetation and Crops, involved collecting 95 moss samples across the territory of Georgia during the period from 2019 to 2023. Primarily samples of were selected, with supplementary samples of , , and in cases of the former's absence. The content of 14 elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, S, Sr, V, and Zn) was detected using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while the Hg content was determined using a Direct Mercury Analyzer.

View Article and Find Full Text PDF

One of the primary sources of trace elements in the environment is wastewater used for irrigation. However, the effects of untreated wastewater containing high concentrations of chromium and zinc on vegetables and the potential human health risks associated with their consumption are poorly understood. This pot experiment aimed to address this research gap.

View Article and Find Full Text PDF
Article Synopsis
  • Nanotechnologies, particularly silver and copper nanoparticles, can affect living systems, prompting researchers to study their impact on the plant species L. under field conditions.
  • The study measured how these nanoparticles are taken up by different parts of the plant using advanced techniques to analyze accumulation levels.
  • Findings showed copper particles concentrated in roots and leaves, while silver particles primarily affected roots and berries, but overall indicated a low human health risk from consuming the nanoparticle-contaminated berries.
View Article and Find Full Text PDF