Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles.
View Article and Find Full Text PDFCardiac fibrosis is a central pathological feature in several cardiac diseases, but the underlying molecular players are insufficiently understood. The extracellular matrix proteoglycan versican is elevated in heart failure and suggested to be a target for treatment. However, the temporal expression and spatial distribution of versican and the versican cleavage fragment containing the neoepitope DPEAAE in cardiac fibrosis remains to be elucidated.
View Article and Find Full Text PDFAims: Heart failure is a condition with high mortality rates, and there is a lack of therapies that directly target maladaptive changes in the extracellular matrix (ECM), such as fibrosis. We investigated whether the ECM enzyme known as A disintegrin and metalloprotease with thrombospondin motif (ADAMTS) 4 might serve as a therapeutic target in treatment of heart failure and cardiac fibrosis.
Methods And Results: The effects of pharmacological ADAMTS4 inhibition on cardiac function and fibrosis were examined in rats exposed to cardiac pressure overload.
Background: Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators.
View Article and Find Full Text PDF