The purpose of the present study was to determine if trihydroxymethamphetamine (THMA), a metabolite of methylenedioxymethamphetamine (MDMA, "ecstasy"), or its thioether conjugate, 6-(N-acetylcystein-S-yl)-2,4,5-trihydroxymethamphetamine (6-NAC-THMA), play a role in the lasting effects of MDMA on brain serotonin (5-HT) neurons. To this end, novel high-yield syntheses of THMA and 6-NAC-THMA were developed. Lasting effects of both compounds on brain serotonin (5-HT) neuronal markers were then examined.
View Article and Find Full Text PDFA healthy, balanced diet is essential for both physical and mental well-being. Such a diet must include an adequate intake of micronutrients, essential fatty acids, amino acids and antioxidants. The monoamine neurotransmitters, serotonin, dopamine and noradrenaline, are derived from dietary amino acids and are involved in the modulation of mood, anxiety, cognition, sleep regulation and appetite.
View Article and Find Full Text PDFWe have tested the cognitive abilities of young (2.5 months) and middle-aged (14 months) wild-type C57Bl/6J mice in the IntelliCage, which enables automated monitoring of spontaneous and learning behaviour in a homecage-like environment. No differences were observed either in circadian activity or in performance in the novelty-induced exploration test, but middle-aged mice exhibited decreased exploratory activity overall.
View Article and Find Full Text PDFPharmacotherapy with amphetamine is effective in the management of attention-deficit/hyperactivity disorder (ADHD), now recognized in adults as well as in children and adolescents. Here we demonstrate that amphetamine treatment, similar to that used clinically for adult ADHD, damages dopaminergic nerve endings in the striatum of adult nonhuman primates. Furthermore, plasma concentrations of amphetamine associated with dopaminergic neurotoxicity in nonhuman primates are on the order of those reported in young patients receiving amphetamine for the management of ADHD.
View Article and Find Full Text PDFA large body of data indicates that (+/-)3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can damage brain serotonin neurons in animals. However, the relevance of these preclinical data to humans is uncertain, because doses and routes of administration used in animals have generally differed from those used by humans. Here, we examined the pharmacokinetic profile of MDMA in squirrel monkeys after different routes of administration, and explored the relationship between acute plasma MDMA concentrations after repeated oral dosing and subsequent brain serotonin deficits.
View Article and Find Full Text PDF