DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from . Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from were obtained and analyzed.
View Article and Find Full Text PDFNatural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
The explosive growth in the number of works addressing the phase separation of intrinsically disordered proteins has driven both the development of new approaches and the optimization of existing methods for biomolecular condensate visualization. In this work, we studied the potential use of the fluorescent dye ANS as a sensor for liquid-liquid phase separation (LLPS), focusing on visualizing condensates formed by the stress-granules scaffold protein G3BP1. Using fluorescence lifetime imaging microscopy (FLIM), we demonstrated that ANS can accumulate in RNA-induced G3BP1 condensates in aqueous solutions, but not in G3BP1 condensates formed under macromolecular crowding conditions in highly concentrated PEG solutions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
The multifunctional promyelocytic leukemia protein (PML) is involved in the regulation of various cellular processes in both physiological and pathological conditions. Specifically, PML is one of the inositol-1,4,5-trisphosphate receptors (IPRs) activity regulators and can influence Ca transport from the endoplasmic reticulum (ER) to mitochondria. In this work, the effects of PML knockout on calcium homeostasis in the cytosol, ER, and mitochondria of HeLa cells were studied upon stimulation with histamine, which induces Ca mobilization from the ER via IPRs.
View Article and Find Full Text PDFIt became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS).
View Article and Find Full Text PDF