Publications by authors named "A Nureddin"

Fertilization is central to the survival and propagation of a species, however, the precise mechanisms that regulate the sperm's journey to the egg are not well understood. In nature, the sperm has to swim through the cervical mucus, akin to a microfluidic channel. Inspired by this, a simple, cost-effective microfluidic channel is designed on the same scale.

View Article and Find Full Text PDF

Aim: Oocyte cryopreservation remains largely experimental, with live birth rates of only 2-4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification.

Materials & Methods: An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets.

View Article and Find Full Text PDF

The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen.

View Article and Find Full Text PDF

Purpose: To study whether maternal meiotic errors in failed-fertilized oocytes involving chromosome 1 occur at frequencies similar to those involving other autosomes, and whether their frequency is affected by maternal age.

Methods: Using fluorescence in situ hybridization (FISH), frequencies of aneusomy and chromatid pre-division involving chromosomes 1, 16, 18, and 21 were determined for 273 failed-fertilized oocytes.

Results: The aneuploidy rate for chromosome 1 was 15.

View Article and Find Full Text PDF

We investigated the frequencies of abnormalities involving either chromosome 1, 16, 18, or 21 in failed-fertilized human oocytes. Although abnormalities involving chromosome 16 showed an age-dependent increase, results for the other chromosomes did not show statistically significant differences among the three age groups, <35 years, 35-39 years, and >39 years. The scoring of four chromosomes is likely to underestimate the true rate of aneuploid cells.

View Article and Find Full Text PDF