Introduction: Reduced brain energy metabolism, mammalian target of rapamycin (mTOR) dysregulation, and extracellular amyloid beta (Aβ) oligomer (xcAβO) buildup are some well-known Alzheimer's disease (AD) features; how they promote neurodegeneration is poorly understood. We previously reported that xcAβOs inhibit nutrient-induced mitochondrial activity (NiMA) in cultured neurons. We now report NiMA disruption in vivo.
View Article and Find Full Text PDFIntroduction: Reduced brain energy metabolism, mTOR dysregulation, and extracellular amyloid-β oligomer (xcAβO) buildup characterize AD; how they collectively promote neurodegeneration is poorly understood. We previously reported that xcAβOs inhibit N utrient-induced M itochondrial A ctivity (NiMA) in cultured neurons. We now report NiMA disruption .
View Article and Find Full Text PDFQuantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs).
View Article and Find Full Text PDF