Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale integration along with their nanofabrication capability. However, linking distant silicon quantum processors is challenging as two-qubit gates in spin qubits typically utilize short-range exchange coupling, which is only effective between nearest-neighbor quantum dots.
View Article and Find Full Text PDFFuture large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems.
View Article and Find Full Text PDFFault-tolerant quantum computers that can solve hard problems rely on quantum error correction. One of the most promising error correction codes is the surface code, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent. Among the many qubit platforms, only superconducting circuits, trapped ions and nitrogen-vacancy centres in diamond have delivered this requirement.
View Article and Find Full Text PDFElectron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 × 3 quantum dot device design and a larger-scale design as a longer-term target.
View Article and Find Full Text PDF