Philos Trans A Math Phys Eng Sci
May 2021
We present the VECMA toolkit (VECMAtk), a flexible software environment for single and multiscale simulations that introduces directly applicable and reusable procedures for verification, validation (V&V), sensitivity analysis (SA) and uncertainty quantication (UQ). It enables users to verify key aspects of their applications, systematically compare and validate the simulation outputs against observational or benchmark data, and run simulations conveniently on any platform from the desktop to current multi-petascale computers. In this sequel to our paper on VECMAtk which we presented last year [1] we focus on a range of functional and performance improvements that we have introduced, cover newly introduced components, and applications examples from seven different domains such as conflict modelling and environmental sciences.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2021
Uncertainty quantification (UQ) is a key component when using computational models that involve uncertainties, e.g. in decision-making scenarios.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2019
We explore the efficiency of a semi-intrusive uncertainty quantification (UQ) method for multiscale models as proposed by us in an earlier publication. We applied the multiscale metamodelling UQ method to a two-dimensional multiscale model for the wound healing response in a coronary artery after stenting (in-stent restenosis). The results obtained by the semi-intrusive method show a good match to those obtained by a black-box quasi-Monte Carlo method.
View Article and Find Full Text PDFCardiovasc Eng Technol
December 2018
Purpose: Coronary artery stenosis, or abnormal narrowing, is a widespread and potentially fatal cardiac disease. After treatment by balloon angioplasty and stenting, restenosis may occur inside the stent due to excessive neointima formation. Simulations of in-stent restenosis can provide new insight into this process.
View Article and Find Full Text PDF