Publications by authors named "A Navarrete-Guijosa"

We examined the exchange of univalent cations (Na+ and H+) retained on two commercially available synthetic zeolites with Li+ ions present in aqueous solutions in contact with the solids with a view to preparing effective controlled-release pharmaceutical forms. The studied zeolites were manufactured by Merck and featured channel diameters of 0.5 (Zeolite 5A, Ref.

View Article and Find Full Text PDF

The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations.

View Article and Find Full Text PDF

The knowledge of the adsorption processes of nonelectrolytes from liquid solution on solid materials involves the study of their kinetic and equilibrium aspects as well as the understanding of their thermodynamic functions. However, in most published papers adsorption isotherms are analyzed by using the Giles classification and other proposed equations which are either empirical or based on kinetic or thermodynamic criteria. Our opinion is that both the kinetic and the equilibrium studies must be complementary and that, in general, equations describing the adsorption isotherms come from the kinetic laws governing the different partial processes which determine the global process.

View Article and Find Full Text PDF

In this paper we used a previously reported model for examining the adsorption of nonelectrolytes in solution by solid adsorbents to study the adsorption of lithium(I) cations by acid and sodium amberlites, which is an ion-exchange process. Based on the results, both are equilibrium processes and obey a kinetic law with a unity partial order in the Li+ concentration. The kinetic results were used to calculate the specific rate constants and thermodynamic activation functions involved.

View Article and Find Full Text PDF