Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.
View Article and Find Full Text PDFNumerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species, a phenomenon known as conspecific negative density dependence (CNDD). A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests, which increases community stabilization, species coexistence and the diversity of local tree species. Previous analyses supporting such a latitudinal gradient in CNDD have suffered from methodological limitations related to the use of static data.
View Article and Find Full Text PDFMycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers.
View Article and Find Full Text PDFBackground: Southeast Asia has experienced widespread deforestation and change in land use. Consequently, many reforestation projects have been initiated in this region. However, it is imperative to carefully choose the tree species for planting, especially in light of the increasing climate variability and the potential alteration of plantation on the watershed water balance.
View Article and Find Full Text PDF