Publications by authors named "A Nandkumar"

Healing or reconstruction of critical-sized bone defects is still challenging in orthopaedic practice. In this study, we developed a new approach to control the degradation and improve the bone regeneration of the AZ31 magnesium substrate, fabricated as mesh cage implants. Subsequently, bilayer nanocomposite coating was carried out using polycaprolactone (PCL) and nano-hydroxyapatite (nHA) by dip-coating and electrospinning.

View Article and Find Full Text PDF

This study describes the preparation of nano-magnesium phosphate (nMP) flakes by one step microwave irradiation method. The synthesized nMP was incorporated with polycaprolactone (PCL), hyperbranched polyglycerol (HPG) and nano-hydroxyapatite (nHA) to fabricate as composite electrospun nanofibrous scaffold for bone tissue engineering applications. The electrospun nanofibers were analyzed by scanning electron microscope, XRD, FTIR, DSC, TGA, and wettability measurement.

View Article and Find Full Text PDF

A novel one-step preparation of magnesium particles and Pluronic F127 incorporated with calcium sulfate hemihydrate (CSH) and nano-hydroxyapatite (nHA) ready to use injectable or moldable beads was developed for bone tissue regeneration applications. The nanocomposite showed setting time less than 15 min, very good injectability (75-85%) and good mechanical strength (52-80 MPa). Samples immersed in SBF showed controlled degradation (40-45% reduction in weight) in 28 days.

View Article and Find Full Text PDF

Surface engineering of implantable devices involving polymeric biomaterials has become an essential aspect for medical implants. A surface enhancement technique can provide an array of unique surface properties that improve its biocompatibility and functionality as an implant. Polyurethane-based implants that have found extensively acclaimed usage as an implant in biomedical applications, especially in the area of cardiovascular devices, still lack any mechanism to ward off bacterial or platelet adhesion.

View Article and Find Full Text PDF

Tobacco induces oxidative stress in the alveolar epithelium and causes its damage. Retinoic acid (RA) has a cardinal role in alveolar cell growth, differentiation, and maturation. The aim of the study was to investigate the role of cell-cell interactions and whether RA could reverse the effect of tobacco extract on epithelial function as expressed by surfactant synthesis.

View Article and Find Full Text PDF