Publications by authors named "A N RAMANATHAN"

This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.

View Article and Find Full Text PDF

The Gangetic Plain, one of the world's most fertile regions, is vital to food and water security in densely populated areas. However, metal contamination in sediments and water poses significant challenges, owing to intensified industrial and agricultural activities and periodic flooding. The ecological risks imposed by metals in the Middle Gangetic Plain remain underexplored because of limited data on their bioavailability across varying sediment depths.

View Article and Find Full Text PDF

Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.

View Article and Find Full Text PDF

Objective: To analyze the frequency, clinical, histopathological, and radiological characteristics of ameloblastoma in Nigeria over the course of two decades.

Study Design: A retrospective analysis was conducted on 371 cases at a Nigerian university hospital between 2000 and 2023. Age, gender, site, histological variants, tumor size and duration were analyzed.

View Article and Find Full Text PDF

Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.

View Article and Find Full Text PDF