Fish bioacoustics, or the study of fish hearing, sound production, and acoustic communication, was discussed as early as Aristotle. However, questions about how fishes hear were not really addressed until the early 20th century. Work on fish bioacoustics grew after World War II and considerably in the 21st century since investigators, regulators, and others realized that anthropogenic (human-generated sounds), which had primarily been of interest to workers on marine mammals, was likely to have a major impact on fishes (as well as on aquatic invertebrates).
View Article and Find Full Text PDFThere are substantial interspecific differences in the morphology of the ears of the more than 34 000 living fish species. However, almost nothing is known about the functional significance of these differences. One reason is that most comparative studies have been conducted on shallow-water species with far less focus on the numerous species that inhabit the depths of the oceans.
View Article and Find Full Text PDFAnthropogenic sound is a prevalent environmental stressor that can have significant impacts on aquatic species, including fishes. In this study, the effects of anthropogenic sound on the vocalization behavior of oyster toadfish (Opasnus tau) at multiple time scales was investigated using passive acoustic monitoring. The effects of specific vessel passages were investigated by comparing vocalization rates immediately after a vessel passage with that of control periods using a generalized linear model.
View Article and Find Full Text PDFSturgeons are basal bony fishes, most species of which are considered threatened and/or endangered. Like all fishes, sturgeons use hearing to learn about their environment and perhaps communicate with conspecifics, as in mating. Thus, anything that impacts the ability of sturgeon to hear biologically important sounds could impact fitness and survival of individuals and populations.
View Article and Find Full Text PDFThe potential effects of underwater anthropogenic sound and substrate vibration from offshore renewable energy development on the behavior, fitness, and health of aquatic animals is a continuing concern with increased deployments and installation of these devices. Initial focus of related studies concerned offshore wind. However, over the past decade, marine energy devices, such as a tidal turbines and wave energy converters, have begun to emerge as additional, scalable renewable energy sources.
View Article and Find Full Text PDF