Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution.
View Article and Find Full Text PDFIn the field of nuclear toxicology, the knowledge of the interaction of actinides (An) with biomolecules is of prime concern in order to elucidate their toxicity mechanism and to further develop selective decorporating agents. In this work, we demonstrated the great potential of hydrophilic interaction liquid chromatography (HILIC) to separate polar thorium (Th) biomimetic peptide complexes, as a key starting point to tackle these challenges. Th was used as plutonium (Pu) analogue and pS16 and pS1368 as synthetic di- and tetra-phosphorylated peptides capable of mimicking the interaction sites of these An in osteopontin (OPN), a hyperphosphorylated protein.
View Article and Find Full Text PDFThe chemical shielding tensor for a paramagnetic system has been derived from the macroscopically observed magnetization using the perturbation theory. An approach to calculate the paramagnetic chemical shifts in transition metal systems based on the spin-only magnetic susceptibility directly evaluated from the Hilbert space of the electronic Zeeman Hamiltonian has been discussed. Computationally, several advantages are associated with this approach: (a) it includes the state-specific paramagnetic Curie (first-order) and Van Vleck (second-order) contributions of the paramagnetic ion to the paramagnetic chemical shifts; (b) thus it avoids the system-specific modeling and evaluating effectively in terms of the electron paramagnetic resonance (EPR) spin Hamiltonian parameters of the magnetic moment of the paramagnetic ion formulated previously; (c) it can be utilized both in the point-dipole (PD) approximation (in the long-range) and with the quantum chemical (QC) method based the hyperfine tensors (in the short-range).
View Article and Find Full Text PDFCharacterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe)], a prototypical example, which contains notable structural features according to X-ray crystallography.
View Article and Find Full Text PDFACS Phys Chem Au
September 2023
Paramagnetism in solid-state materials has long been considered an additional challenge for structural investigations by using solid-state nuclear magnetic resonance spectroscopy (ssNMR). The strong interactions between unpaired electrons and the surrounding atomic nuclei, on the one hand, are complex to describe, and on the other hand can cause fast decaying signals and extremely broad resonances. However, significant progress has been made over the recent years in developing both theoretical models to understand and calculate the frequency shifts due to paramagnetism and also more sophisticated experimental protocols for obtaining high-resolution ssNMR spectra.
View Article and Find Full Text PDF