Understanding the mechanisms that drive HIV expression and latency is a key goal for achieving an HIV cure. Here we investigate the role of the SETD2 histone methyltransferase, which deposits H3K36 trimethylation (H3K36me3), in HIV infection. We show that prevention of H3K36me3 by a potent and selective inhibitor of SETD2 (EPZ-719) leads to reduced post-integration viral gene expression and accelerated emergence of latently infected cells.
View Article and Find Full Text PDFObjectives: Examine the association of multimorbidity and psychosocial functioning with posttraumatic stress disorder (PTSD) symptom severity reported among post-9/11 veterans.
Method: This was a secondary analysis of survey data collected from a national sample of post-9/11 veterans with at least 3 years of Department of Veterans Affairs care, stratified by comorbidity trajectory and sex ( = 1,989). Comorbidity trajectories were derived by latent class analysis to develop probabilistic combinations of physical and mental health conditions in a previous effort (Pugh et al.
In this study, microalgae culture was integrated into wastewater treatment as tertiary treatment to recover nutrients such as nitrogen and phosphorous. Different wastewater dilutions were assessed to investigate the effect on microalgae biomass composition for further energy recovery in the form of biogas: photobioreactor (PBR)1: control; PBR2: 10% wastewater; PBR3 50% wastewater and PBR4: 100% wastewater. After 10 days of cultivation, PBR3 presented the highest biomass productivity, which was 47.
View Article and Find Full Text PDFSci Total Environ
November 2021
Cyanobacterial biomass has constituted a crucial third and fourth-generation biofuel material, with great potential to synthesize a wide range of metabolites, mainly carbohydrates. Lately, carbohydrate-based biofuels from cyanobacteria, such as bioethanol, biohydrogen, and biobutanol, have attracted attention as a sustainable alternative to petroleum-based products. Cyanobacteria can perform a simple process of saccharification, and extracted carbohydrates can be converted into biofuels with two alternatives; the first one consists of a fermentative process based on bacteria or yeasts, while the second alternative consists of an internal metabolic process of their own in intracellular carbohydrate content, either by the natural or genetic engineered process.
View Article and Find Full Text PDFBioelectrochemical systems (BES), mainly microbial fuel cells (MEC) and microbial electrolysis cells (MFC), are unique biosystems that use electroactive bacteria (EAB) to produce electrons in the form of electric energy for different applications. BES have attracted increasing attention as a sustainable, low-cost, and neutral-carbon option for energy production, wastewater treatment, and biosynthesis. Complex interactions between EAB and the electrode materials play a crucial role in system performance and scalability.
View Article and Find Full Text PDF