Publications by authors named "A N Leveille"

Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control.

View Article and Find Full Text PDF

The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource-intensive and provide little control over binding mode. Despite considerable progress in physics-based methods for peptide design and deep-learning methods for protein design, there are currently no robust approaches for design of protein-binding macrocycles. Here, we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders against protein targets of interest.

View Article and Find Full Text PDF

We report the first structure-activity studies of arylidene-indolinone compound which was reported as a ligand of autophagy-related protein LC3B. The literature has conflicting information on the binding affinity of this compound and there is some debate regarding its use as a component of autophagy-dependent degrader compounds. We developed an AlphaScreen assay to measure competitive inhibition of the binding of known peptide ligands to LC3B and its paralog GABARAP.

View Article and Find Full Text PDF

A commercial producer hatching and rearing chukar partridges (Alectoris chukar) in Ontario, Canada had flocks experiencing coccidiosis. Microscopic analysis of Eimeria species isolated from a field sample indicated the presence of 2 distinct oocyst morphotypes; the most abundant species was determined to be Eimeria chapmani, based on oocyst morphology and sequence-based genotyping, and the less abundant, second Eimeria sp. was an undescribed parasite.

View Article and Find Full Text PDF

Some differences exist between the male and female immune systems. Despite this, a sex-based analysis is not frequently performed in most studies. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how gold NPs with a primary size of 20 (AuNP) and 70 nm (AuNP) will alter the biology of polymorphonuclear neutrophil cells (PMNs) isolated from men and women as well as their potential pro-inflammatory effect in vivo in male and female mice.

View Article and Find Full Text PDF