Publications by authors named "A N Korovina"

The natural polyphenol resveratrol is a biologically active compound that interacts with DNA and affects the activity of some nuclear enzymes. Its effect on the interaction between nucleosomes and poly(ADP-ribose) polymerase-1 (PARP1) and on the catalytic activity of PARP1 was studied using Western blotting, spectrophotometry, electrophoretic mobility shift assay, and single particle Förster resonance energy transfer microscopy. Resveratrol inhibited PARP1 activity at micro- and sub-micromolar concentrations, but the inhibitory effect decreased at higher concentrations due to the aggregation of the polyphenol.

View Article and Find Full Text PDF

HMO1 is an architectural nuclear DNA-binding protein that stimulates the activity of some remodelers and regulates the transcription of ribosomal protein genes, often binding to a DNA motif called IFHL. However, the molecular mechanism dictating this sequence specificity is unclear. Our circular dichroism spectroscopy studies show that the HMO1:DNA complex forms without noticeable changes in the structure of DNA and HMO1.

View Article and Find Full Text PDF

Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C).

View Article and Find Full Text PDF

Unlabelled: Poly(ADP-ribose)polymerase 2 (PARP2) is a nuclear protein that acts as a DNA damage sensor; it recruits the repair enzymes to a DNA damage site and facilitates formation of the repair complex. Using single particle Förster resonance energy transfer microscopy and electrophoretic mobility shift assay (EMSA) we demonstrated that PARP2 forms complexes with a nucleosome containing different number of PARP2 molecules without altering conformation of nucleosomal DNA both in the presence and in the absence of Mg or Ca ions. In contrast, Zn ions directly interact with PARP2 inducing a local alteration of the secondary structure of the protein and PARP2-mediated, reversible structural reorganization of nucleosomal DNA.

View Article and Find Full Text PDF

The natural flavonoid epigallocatechin gallate has a wide range of biological activities, including being capable of binding to nucleic acids; however, the mechanisms of the interactions of epigallocatechin gallate with DNA organized in chromatin have not been systematically studied. In this work, the interactions of epigallocatechin gallate with chromatin in cells and with nucleosomes and chromatosomes in vitro were studied using fluorescent microscopy and single-particle Förster resonance energy transfer approaches, respectively. Epigallocatechin gallate effectively penetrates into the nuclei of living cells and binds to DNA there.

View Article and Find Full Text PDF