Publications by authors named "A N Chremos"

Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.

View Article and Find Full Text PDF

We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7.

View Article and Find Full Text PDF

Articular cartilage is a composite hydrogel found in animal and human joints, which exhibits unique load-bearing properties that have been challenging to reproduce in synthetic materials and model in molecular dynamics (MD) simulations. We computationally investigate a composite hydrogel that mimics key functional properties of articular cartilage as a potential biomimetic model to investigate its unique load-bearing properties. Specifically, we find that the emergence of prestress in composite gels derives primarily from the stiffness of the polymer matrix and the asymmetry in the enthalpic interactions of the embedded particles and polymer matrix.

View Article and Find Full Text PDF

Owing to their great importance in materials science and other fields, we investigate the solution and osmotic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimating the second and third virial coefficients, and by extension, we identify the -point where the second virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to macrogels in that the particle-like scattering profile disappears at moderate concentrations.

View Article and Find Full Text PDF

We propose an approach to generate a wide range of randomly branched polymeric structures to gain general insights into how polymer topology encodes a configurational structure in solution. Nanogel particles can take forms ranging from relatively symmetric sponge-like compact structures to relatively anisotropic open fractal structures observed in some nanogel clusters and in some self-associating polymers in solutions, such as aggrecan solutions under physiologically relevant conditions. We hypothesize that this broad "spectrum" of branched polymer structures derives from the degree of regularity of bonding in the network defining these structures.

View Article and Find Full Text PDF