We give for the first time theoretical estimates of unknown rare electron-capture (EC) decay branchings of ^{44}Ti, ^{57}Co, and ^{139}Ce, relevant for searches of (exotic) dark-matter particles. The nuclear-structure calculations have been done exploiting the nuclear shell model with well-established Hamiltonians and an advanced theory of β decay. In the absence of experimental measurements of these rare branches, these estimates are of utmost importance for terrestrial searches of dark-matter particles, such as axionic dark matter in the form of axionlike particles, anapole dark matter, and dark photons in nuclear transitions.
View Article and Find Full Text PDFThis study investigates the efficacy of predicting age-related macular degeneration (AMD) activity through deep neural networks (DNN) using a cross-instrument training dataset composed of Optical coherence tomography-angiography (OCTA) images from two different manufacturers. A retrospective cross-sectional study analyzed 2D vascular en-face OCTA images from Heidelberg Spectralis (1478 samples: 1102 training, 276 validation, 100 testing) and Optovue Solix (1003 samples: 754 training, 189 validation, 60 testing). OCTA scans were labeled based on clinical diagnoses and adjacent B-scan OCT fluid information, categorizing activity into normal, dry AMD, active wet AMD, and wet AMD in remission.
View Article and Find Full Text PDFBackground: Inclusion body hepatitis (IBH) resulted in a substantial economic loss in Western India during 2019 to 2021.
Aims: The study aimed to characterize fowl adenovirus (FAdV) from field outbreaks.
Methods: The study was conducted on 290 liver samples from 66 poultry flocks.