Background: Few studies have examined changes in skeletal muscle physiology post-stroke. This study examined changes in tissue oxygen saturation (StO) of the vastus lateralis (VL) muscle of stroke survivors and age-matched control participants during maximal and submaximal isometric contractions of the knee extensor muscles.
Objectives: We hypothesized that tissue oxygen desaturation (ΔStO) during knee extensor muscle contractions would be less in the VL in the paretic vs.
Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated.
View Article and Find Full Text PDFIschemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg.
View Article and Find Full Text PDFThe purpose of this study was to use high density surface EMG recordings to quantify stroke-related abnormalities in motor unit firing behavior during repeated sub-maximal knee extensor contractions. A high density surface EMG system (sEMG) was used to record and extract single motor unit firing behavior in the vastus lateralis muscle of 6 individuals with chronic stroke and 8 controls during repeated sub-maximal isometric knee extension contractions. Paretic motor unit firing rates were increased with subsequent contractions (6.
View Article and Find Full Text PDFIndividuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb.
View Article and Find Full Text PDF