Methylthio-d-ribose-1-phosphate (MTR1P) isomerase (MtnA) catalyzes the reversible isomerization of the aldose MTR1P into the ketose methylthio-d-ribulose 1-phosphate. It serves as a member of the methionine salvage pathway that many organisms require for recycling methylthio-d-adenosine, a byproduct of S-adenosylmethionine metabolism, back to methionine. MtnA is of mechanistic interest because unlike most other aldose-ketose isomerases, its substrate exists as an anomeric phosphate ester and therefore cannot equilibrate with a ring-opened aldehyde that is otherwise required to promote isomerization.
View Article and Find Full Text PDFMethylthio-d-ribose-1-phosphate (MTR1P) isomerase (MtnA) functions in the methionine salvage pathway by converting the cyclic aldose MTR1P to its open-chain ketose isomer methylthio-d-ribulose 1-phosphate (MTRu1P). What is particularly challenging for this enzyme is that the substrate's phosphate ester prevents facile equilibration to an aldehyde, which in other aldose-ketose isomerases is known to activate the α-hydrogen for proton or hydride transfer between adjacent carbons. We speculated that MtnA could use covalent catalysis via a phosphorylated residue to permit isomerization by one of the canonical mechanisms, followed by phosphoryl transfer back to form the product.
View Article and Find Full Text PDFBeilstein J Org Chem
October 2021
In the presence of a suitable acid or base, α-hydroxyaldehydes, ketones, and imines can undergo isomerization that features the 1,2-shift of an alkyl or aryl group. In the process, the hydroxy group is converted to a carbonyl and the aldehyde/ketone or imine is converted to an alcohol or amine. Such α-ketol/α-iminol rearrangements are used in a wide variety of synthetic applications including asymmetric synthesis, tandem reactions, and the total synthesis and biosynthesis of natural products.
View Article and Find Full Text PDFSolvent isotope effects have long been used as a mechanistic tool for determining enzyme mechanisms. Most commonly, macroscopic rate constants such as and / are found to decrease when the reaction is performed in DO for a variety of reasons including the transfer of protons. Under certain circumstances, these constants are found to increase, in what is termed an inverse solvent kinetic isotope effect (SKIE), which can be a diagnostic mechanistic feature.
View Article and Find Full Text PDF