J Environ Manage
October 2023
The spread of antimony from mine wastes to the environment represents a matter of great concern due to its adverse effects on impacted ecosystems. There is an urgent need for developing and adopting sustainable and inexpensive measures to deal with this type of wastes. In this study the Sb leaching behavior of mine waste rocks and mine tailings derived from the exploitation of Sb ore deposits was characterized using standard batch leaching tests (TCLP and EN-12457-4) and column leaching essays.
View Article and Find Full Text PDFWastes derived from the exploitation of stibnite ore deposits were studied to determine their mineralogical, chemical, and environmental characteristics and establish the Sb distribution and the current and long-term risks of Sb mobilization. Representative samples of mine waste rocks, mine tailings, and smelting waste were studied by X-ray powder diffraction, polarized light microscopy, electron microprobe analysis, and digestion, leaching, and extraction procedures. The main Sb-bearing minerals and phases identified in the smelting waste were natrojarosite, iron (oxyhydr)oxides, mixtures of iron and antimony (oxyhydr)oxides, and tripuhyite; those in the mine tailings and mine waste rocks were iron (oxyhydr)oxides and/or mixtures of iron and antimony (oxyhydr)oxides.
View Article and Find Full Text PDFThe secondary products of an arsenopyrite-bearing mine waste dump were characterized in order to ascertain their mineralogical, chemical and environmental features and to appraise their role in the abatement of As in the environment. To this purpose, representative surface samples of weathered sulfides (including cemented phases) and hardpan samples were collected and studied by X-ray powder diffraction (XRD), polarized light microscopy, electron microprobe analysis (EMPA), micro-Raman spectroscopy and digestion, extraction and leaching methods. Scorodite, amorphous ferric arsenates (AFA), elemental sulfur, hydronium jarosite, goethite, hematite and hydrous ferric oxides were the secondary products identified in the mine wastes.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2018
Former mine exploitations entail a serious threat to surrounding ecosystems as after closure of mining activities their unmanaged wastes can be a continuous source of toxic trace elements. Quite often these mine sites are found within agricultural farming areas, involving serious hazards as regards product (feed/food) quality. In this work a grazing land impacted by the abandoned mine exploitation of an arsenical deposit was studied so as to evaluate the fate of arsenic (As) and other trace elements and the potential risks involved.
View Article and Find Full Text PDFA mining impacted cropland was studied in order to assess its As pollution level and the derived environmental and health risks. Profile soil samples (0-50 cm) and rye plant samples were collected at different distances (0-150 m) from the near mine dump and analyzed for their As content and distribution. These cropland soils were sandy, acidic and poor in organic matter and Fe/Al oxides.
View Article and Find Full Text PDF