Publications by authors named "A Mucciarelli"

Blue stragglers are anomalously luminous core hydrogen-burning stars formed through mass-transfer in binary/triple systems and stellar collisions. Their physical and evolutionary properties are largely unknown and unconstrained. Here we analyze 320 high-resolution spectra of blue stragglers collected in eight galactic globular clusters with different structural characteristics and show evidence that the fraction of fast rotating blue stragglers (with rotational velocities larger than 40 km/s) increases for decreasing central density of the host system.

View Article and Find Full Text PDF

Stellar ejecta gradually enrich the gas out of which subsequent stars form, making the least chemically enriched stellar systems direct fossils of structures formed in the early Universe. Although a few hundred stars with metal content below 1,000th of the solar iron content are known in the Galaxy, none of them inhabit globular clusters, some of the oldest known stellar structures. These show metal content of at least approximately 0.

View Article and Find Full Text PDF

M2 has been claimed to possess three distinct stellar components that are enhanced in iron relative to each other. We use equivalent width measurements from 14 red giant branch stars from which Yong et al. detect a ∼0.

View Article and Find Full Text PDF

Globular star clusters that formed at the same cosmic time may have evolved rather differently from the dynamical point of view (because that evolution depends on the internal environment) through a variety of processes that tend progressively to segregate stars more massive than the average towards the cluster centre. Therefore clusters with the same chronological age may have reached quite different stages of their dynamical history (that is, they may have different 'dynamical ages'). Blue straggler stars have masses greater than those at the turn-off point on the main sequence and therefore must be the result of either a collision or a mass-transfer event.

View Article and Find Full Text PDF

Globular star clusters are compact and massive stellar systems old enough to have witnessed the entire history of our Galaxy, the Milky Way. Although recent results suggest that their formation may have been more complex than previously thought, they still are the best approximation to a stellar population formed over a relatively short timescale (less than 1 Gyr) and with virtually no dispersion in the iron content. Indeed, only one cluster-like system (omega Centauri) in the Galactic halo is known to have multiple stellar populations with a significant spread in iron abundance and age.

View Article and Find Full Text PDF