Aims: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs).
Methods And Results: Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used.
Background: COVID-19 is associated with an increased risk of cardiovascular complications. Although cytokines have a predominant role in endothelium damage, the precise molecular mechanisms are far from being elucidated.
Objectives: The present study hypothesized that inflammation in patients with COVID-19 contributes to endothelial dysfunction through redox-sensitive SGLT2 overexpression and investigated the protective effect of SGLT2 inhibition by empagliflozin.
Acute kidney injury (AKI) is a common complication of cardiovascular diseases (CVDs) in both males and females, increasing mortality rate substantially. Premenopausal females appear to be more protected, suggesting a potential protective role of female sex hormones. Here, we tested the hypothesis that ovariectomy (OVX) eliminates the beneficial effect of female sex on renal protection following acute myocardial infarction (MI).
View Article and Find Full Text PDFSGLT2 inhibitors (SGLT2i) showed pronounced beneficial effects in patients with heart failure but the underlying mechanisms remain unclear. We evaluated the effect of empagliflozin, selective SGLT2i, on hypertension-induced cardiac and vascular dysfunction. Male Wistar rats received diet with or without empagliflozin (30 mg/kg/day).
View Article and Find Full Text PDF