Replication of viruses in living tissues and cell cultures is a "number game" involving complex biological processes (cell infection, virus replication inside infected cell, cell death, viral degradation) as well as transport processes limiting virus spatial propagation. In epithelial tissues and immovable cell cultures, viral particles are basically transported via Brownian diffusion. Highly non-linear kinetics of viral replication combined with diffusion limitation lead to spatial propagation of infection as a moving front switching from zero to high local viral concentration, the behavior typical of spatially distributed excitable media.
View Article and Find Full Text PDFViral replication in a cell culture is described by a delay reaction-diffusion system. It is shown that infection spreads in cell culture as a reaction-diffusion wave, for which the speed of propagation and viral load can be determined both analytically and numerically. Competition of two virus variants in the same cell culture is studied, and it is shown that the variant with larger individual wave speed out-competes another one, and eliminates it.
View Article and Find Full Text PDF