Publications by authors named "A Mottais"

Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair.

View Article and Find Full Text PDF

Aerosol lung gene therapy using non-viral delivery systems represents a credible therapeutic strategy for chronic respiratory diseases, such as cystic fibrosis (CF). Progress in CF clinical setting using the lipidic formulation GL67A has demonstrated the relevance of such a strategy while emphasizing the need for more potent gene transfer agents. In recent years, many novel non-viral gene delivery vehicles were proposed as potential alternatives to GL67 cationic lipid.

View Article and Find Full Text PDF

Objectives: Two CFTR-dependent β-adrenergic sweat rate tests applying intradermal drug injections were reported to better define diagnosis and efficacy of CFTR-directed therapies. The aim of this work was to develop and test a needle-free image-based test and to provide an accurate analysis of the responses.

Methods: The modified method was conducted by applying two successive iontophoresis sessions using the Macroduct device.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator () gene.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease characterized by progressive lung and chronic digestive manifestations. We have shown that therapeutic doses of vardenafil, a phosphodiesterase type 5 (PDE5) inhibitor, corrects CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport in respiratory and intestinal tissues of F508del homozygous mice. Here, we studied the effect of vardenafil on CFTR in 16HBE14o and CFBE41o cell lines.

View Article and Find Full Text PDF