Objectives: To assess sex-specific differences in the association between pre-transfusion haemoglobin values and early neurodevelopmental function.
Design: Observational follow-up of infants with birth weights <1000 g and gestational ages 22-28 weeks who were enrolled in the NICHD Neonatal Research Network Transfusion of Prematures (TOP) Trial at 19 U.S.
The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This study aimed to verify whether capacitation coincides with reversible oxidative post-translational modifications of proteins (oxPTMs).
View Article and Find Full Text PDFThe specific chemical reactivity of thiol groups makes protein cysteines susceptible to reactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) resulting in the formation of various reversible and irreversible oxidative post-translational modifications (oxPTMs). This review highlights a number of gel-based redox proteomic approaches to detect protein oxPTMs, with particular emphasis on S-nitrosylation, which we believe are currently one of the most accurate way to analyze changes in the redox status of proteins. The information collected in this review relates to the recent progress regarding methods for the enrichment and identification of redox-modified proteins, with an emphasis on fluorescent gel proteomics.
View Article and Find Full Text PDFAnim Reprod Sci
October 2020
It is widely recognized that quality of spermatozoa in sexed semen (SS) samples is not as great as for conventional, non-sexed semen (NS). There are differences in qualitative and biochemical variables between spermatozoa in NS and SS. Information, however, is lacking on molecular differences, especially concerning spermatozoa proteomic differences is SS and NS.
View Article and Find Full Text PDFBackground: Polyhydroxyalkanoates (PHAs) have attracted much attention in recent years as natural alternatives to petroleum-based synthetic polymers that can be broadly used in many applications. Pseudomonas putida KT2440 is a metabolically versatile microorganism that is able to synthesize medium-chain-length PHAs (mcl-PHAs). The phenomena that drive mcl-PHAs synthesis and accumulation seems to be complex and are still poorly understood.
View Article and Find Full Text PDF