With its proven biocompatibility and excellent mechanical properties, iron is an excellent source material for clinical cardiac and vascular applications. However, its relatively low degradation rate limits its use for the healing and remodeling of diseased blood vessels. To address these issues, a multi-purpose fabrication process to develop a bilayer alloy composed of electroformed iron (E-Fe) and iron-phosphorus (Fe-P) was employed.
View Article and Find Full Text PDFPure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of arteries. Being a micrometre-scale biomedical device, the mentioned variables have been found to be governed by the average grain size of the bulk material.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2015
This article reports a degradation study that was done on stent prototypes made of biodegradable Fe35Mn alloy in a simulated human coronary arterial condition. The stent degradation was observed for a short-term period from 0.5 to 168 h, which simulates the early period of stenting procedure.
View Article and Find Full Text PDF