In view of the importance of quantum non-locality in cryptography, quantum computation, and communication complexity, it is crucial to decide whether a given correlation exhibits non-locality or not. As proved by Pitowski, this problem is NP-complete, and is thus computationally intractable unless NP is equal to P. In this paper, we first prove that the Euclidean distance of given correlations from the local polytope can be computed in polynomial time with arbitrary fixed error, granted the access to a certain oracle; namely, given a fixed error, we derive two upper bounds on the running time.
View Article and Find Full Text PDFThe communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating the process of preparation, transmission through the channel, and subsequent measurement of a quantum state. At present, only little is known about this quantity. In this Letter, we present a procedure for systematically evaluating the communication complexity of channels in any general probabilistic theory, in particular, quantum theory.
View Article and Find Full Text PDFPhys Rev Lett
September 2012
The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality.
View Article and Find Full Text PDFSo far it has been shown that the quantum dynamics cannot be described as a classical Markov process unless the number of classical states is uncountably infinite. In this Letter, we present a stochastic model with time-correlated noise that exactly reproduces any unitary evolution of a qubit and requires just four classical states. The invasive updating of only 1 bit during a measurement accounts for the quantum violation of the Leggett-Garg inequalities.
View Article and Find Full Text PDFIn the presence of many waves, giant events can occur with a probability higher than expected for random dynamics. By studying linear light propagation in a glass fiber, we show that optical rogue waves originate from two key ingredients: granularity, or a minimal size of the light speckles at the fiber exit, and inhomogeneity, that is, speckles clustering into separate domains with different average intensities. These two features characterize also rogue waves in nonlinear systems; thus, nonlinearity just plays the role of bringing forth the two ingredients of granularity and inhomogeneity.
View Article and Find Full Text PDF