Publications by authors named "A Mollgaard"

A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between different activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71% of the activity and 85% of the inactivity involved in communication, mobility, and physical proximity.

View Article and Find Full Text PDF

Recently developed information communication technologies, particularly the Internet, have affected how we, both as individuals and as a society, create, store, and recall information. The Internet also provides us with a great opportunity to study memory using transactional large-scale data in a quantitative framework similar to the practice in natural sciences. We make use of online data by analyzing viewership statistics of Wikipedia articles on aircraft crashes.

View Article and Find Full Text PDF

The weight of links in a network is often related to the similarity of the nodes. Here, we introduce a simple tunable measure for analysing the similarity of nodes across different link weights. In particular, we use the measure to analyze homophily in a group of 659 freshman students at a large university.

View Article and Find Full Text PDF

Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions.

View Article and Find Full Text PDF

Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise.

View Article and Find Full Text PDF