The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.
View Article and Find Full Text PDFPhysiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).
View Article and Find Full Text PDFBackground: Clinical risk factors of deficient immune responses to COVID-19 mRNA vaccination in SARS-CoV-2 naive hemodialysis recipients (HDR) have already been identified. Clinical factors influencing hybrid immunity induced by SARS-CoV-2 infection and vaccination in HDR have not been reported.
Methods: A comprehensive analysis of antibody (Ab) and T cell responses to two doses of BNT162b2 mRNA vaccination was performed in 103 HDR, including 75 SARS-CoV-2 naive and 28 experienced patients, and in 106 healthy controls (HC) not undergoing HD, including 40 SARS-CoV-2 naive and 66 experienced subjects.
BK polyomavirus (BKPyV) is still a real threat in the management of kidney transplantation. Immunosuppressive treatment disrupts the equilibrium between virus replication and immune response, and uncontrolled BKPyV replication leads to nephropathy (BKPyV nephropathy). The first evidence of BKPyV reactivation in transplant recipients is the detection of viral shedding in urine, which appears in 20% to 60% of patients, followed by BKPyV viremia in 10-20% of kidney transplant recipients.
View Article and Find Full Text PDF