Publications by authors named "A Minnock"

Two dipeptides, each containing a lysyl residue, were disubstituted with chlorambucil (CLB) and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid (DMQ-MA): DMQ-MA-Lys(CLB)-Gly-NH2 (DM-KCG) and DMQ-MA-beta-Ala-Lys(CLB)-NH2 (DM-BKC). These peptide-drug conjugates were designed to investigate sequence-specificity of DNA cleavage directed by the proximity effect of the DNA cleavage chromophore (DMQ-MA) situated close to the alkylating agent (CLB) inside a dipeptide moiety. Agarose electrophoresis studies showed that DM-KCG and DM-BKC possess significant DNA nicking activity toward supercoiled DNA whereas CLB and its dipeptide conjugate Boc-Lys(CLB)-Gly-NH2 display little DNA nicking activity.

View Article and Find Full Text PDF

The luzopeptin antibiotics contain a cyclic decadepsipeptide to which are attached two quinoline chromophores that bisintercalate into DNA. Although they bind DNA less tightly than the structurally related quinoxaline antibiotics echinomycin and triostin A, the molecular basis of their interaction remains unclear. We have used the PCR in conjunction with novel nucleotides to create specifically modified DNA for footprinting experiments.

View Article and Find Full Text PDF

Previous studies have shown that a cationic water-soluble pyridinium zinc phthalocyanine (PPC) is a powerful photosensitizer that is able to inactivate Escherichia coli. In the current work incubation of E. coli cells with PPC in the dark caused alterations in the outer membrane permeability barrier of the cells, rendering the bacteria much more sensitive to hydrophobic compounds, with little effect seen with hydrophilic compounds.

View Article and Find Full Text PDF

Incorporation of modified nucleotides into DNA, using the PCR, has allowed us to probe the influence that the exocyclic 5-methyl group of pyrimidines has on DNAse I cleavage and sequence recognition by drugs. The results show that removal of the methyl group from the major groove, made possible by substituting uridine for thymidine, allows DNAse I to cleave more readily at AT-rich regions compared to normal DNA. By contrast, addition of an extra methyl group, contrived by substituting 5-methylcytidine for normal cytidine, allows DNAse I to cleave more readily at GC-rich regions compared to normal DNA.

View Article and Find Full Text PDF

The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease.

View Article and Find Full Text PDF