The gene () has been proposed to be a proto-oncogene due to high RNA transcript levels found in multiple cancers, including myeloma, breast, lung, pancreas and esophageal cancer. The presence of an open reading frame (ORF) in humans and other primates suggests protein-coding potential. Yet, we still lack evidence of a functional MYEOV protein.
View Article and Find Full Text PDFBackground: Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses.
View Article and Find Full Text PDFThe human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide.
View Article and Find Full Text PDFPathogenic variants affecting the gene are responsible for the manifestation of extremely rare cancer‑predisposing Bloom syndrome. The present study reports on a case of an infant with a congenital hypotrophy, short stature and abnormal facial appearance. Initially she was examined using a routine molecular diagnostic algorithm, including the cytogenetic analysis of her karyotype, microarray analysis and methylation‑specific MLPA, however, she remained undiagnosed on a molecular level.
View Article and Find Full Text PDFGenomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138.
View Article and Find Full Text PDF