Publications by authors named "A Mikszewski"

The COVID-19 pandemic, caused by SARS-CoV-2, highlighted the importance of understanding transmission modes and implementing effective mitigation strategies. Recognizing airborne transmission as a primary route has reshaped public health measures, emphasizing the need to optimize indoor environments to reduce risks. Numerous tools have emerged to assess airborne infection risks in enclosed spaces, providing valuable resources for public health authorities, researchers, and the general public.

View Article and Find Full Text PDF

Public transport environments are thought to play a key role in the spread of SARS-CoV-2 worldwide. Indeed, high crowding indexes (i.e.

View Article and Find Full Text PDF

The infectious emission rate is a fundamental input parameter for airborne transmission risk assessment, but data are limited due to reliance on estimates from chance superspreading events. This study assesses the strength of a predictive estimation approach developed by the authors for SARS-CoV-2 and uses novel estimates to compare the contagiousness of respiratory pathogens. We applied the approach to SARS-CoV-1, SARS-CoV-2, MERS, measles virus, adenovirus, rhinovirus, coxsackievirus, seasonal influenza virus and (TB) and compared quanta emission rate (ER) estimates to literature values.

View Article and Find Full Text PDF

Given that breathing is one of the most fundamental physiological functions, there is an urgent need to broaden our understanding of the fluid dynamics that governs it. There would be many benefits from doing so, including a better assessment of respiratory health, a basis for more precise delivery of pharmaceutical drugs for treatment, and the understanding and potential minimization of respiratory infection transmission. We review the physics of particle generation in the respiratory tract, the fate of these particles in the air on exhalation and the physics of particle inhalation.

View Article and Find Full Text PDF

In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking).

View Article and Find Full Text PDF