An asymmetric Michael addition of malononitrile to vinyl phosphonates was accomplished by hydrogen bond-enhanced bifunctional halogen bond (XB) catalysis. NMR titration experiments were used to demonstrate that halogen bonding, with the support of hydrogen-bonding, played a key role in the activation of the Michael acceptors through the phosphonate group. This is the first example of the use of XBs for the activation of organophosphorus compounds in synthesis.
View Article and Find Full Text PDFThe enantioselective [2,3]-Wittig rearrangement of cinnamyloxycyclopentanone derivatives was performed in the presence of a Cinchona-based primary amine. The described method provides synthetically valuable α-hydroxy ketones with quaternary stereogenic centers in excellent enantiomeric purities. Relying on the X-ray crystal structure of the product and the DFT calculations, we propose that the rearrangement is promoted by an intramolecular hydrogen bond between the substrate and the catalyst.
View Article and Find Full Text PDFStrong halogen bond (XB) donors are needed for the activation of neutral substrates. We demonstrate that XB donor properties of iodo-triazoles can be significantly enhanced by quaternization in combination with varying the counterion and aromatic substituent, exemplified by association constants with quinuclidine as high as 1.1 × 10 M.
View Article and Find Full Text PDFIn the past decade halogen bond (XB) catalysis has gained considerable attention. Halo-triazoles are known XB donors, yet few examples detail their use as catalysts. As a continuation of our previous work the catalytic properties of substituted enantiomerically pure halo-triazolium salts were explored in the reaction between an imine and Danishefsky's diene leading to the formation of dihydropyridinone.
View Article and Find Full Text PDFThe work on developing a scalable lipase-catalytic method for the kinetic resolution of long-chain 1,2-alkanediols, complemented by crystallization of the pure enantiomers from the reaction mixtures, offered the possibility of a more detailed study of the aggregation of such diols. MD modeling, mass spectrometry, (1)H NMR, and DOSY studies provided a novel insight into the nucleation process. An efficient protocol for stereo- and chemoselective crystallization of (S)-1,2-dodecanediol and related compounds from the crude bioconversion mixtures was developed.
View Article and Find Full Text PDF