The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFWe investigate Raman spectra (100 cm to 3900 cm) of magnesium oxide nanoparticles with nominal sizes of 10 nm, 20 nm, 40 nm, 50 nm, and 300 nm. The crystal structure of MgO prohibits first-order modes and yet, there are numerous reports of relatively intense peaks throughout the literature. Raman signals at approximately 278 cm and 445 cm that were attributed to MgO nanoparticles by previous authors are shown to belong to layers of Mg(OH) formed on the surface of MgO nanoparticles.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2022
We report the calculation of Raman modes of thiophenol molecules adsorbed on a real gold surface. The calculated Raman spectra strongly depend on the absorption configuration of the molecule on the metallic surface, a feature that should be carefully taken into account in the interpretation of the surface enhanced Raman spectra (SERS). The calculated Raman spectra are compared with experimental SERS measurements, the best accordance being obtained for a tilted configuration of the absorbed molecule.
View Article and Find Full Text PDFAn innovative approach for the design of air electrodes for metal-air batteries are free-standing scaffolds made of electrospun polyacrylonitrile fibres. In this study, cobalt-decorated fibres are prepared, and the influence of carbonisation temperature on the resulting particle decoration, as well as on fibre structure and morphology is discussed. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, and inductively coupled plasma optical emission spectrometry are used for characterisation.
View Article and Find Full Text PDFTip-enhanced spectroscopy techniques, in particular tip-enhanced Raman spectroscopy (TERS), rely on a localized surface plasmon resonance (LSPR). This LSPR depends on the near field antenna, its material and shape, and the surrounding medium with respect to its relative permittivity and the volume fraction of the optical near field occupied by the sample. Here, we investigate the effects of the surface composition and topography on the change of the LSPR intensity in tip-enhanced spectroscopy on SrTiO nanoislands by monitoring the LSPR enhanced luminescence of gold tips.
View Article and Find Full Text PDF