Publications by authors named "A Menachery"

Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability.

View Article and Find Full Text PDF

Heterogeneity and spatial arrangement of individual cells within tissues are critical to the identity of the host multicellular organism. While current single-cell techniques are capable of resolving heterogeneity, they mostly rely on extracting target cells from their physiological environment and hence lose the spatiotemporal resolution required for understanding cellular networks. Here, a multifunctional noncontact scanning probe that can precisely perform multiple manipulation procedures on living single-cells, while within their physiological tissue environment, is demonstrated.

View Article and Find Full Text PDF

We have developed a rapid technique for characterizing the biomechanical properties of dendritic cells using dielectrophoretic forces. It is widely recognized that maturing of dendritic cells modulates their stiffness and migration capabilities, which results in T-cell activation triggering the adaptive immune response. Therefore it is important to develop techniques for mechanophenotyping of immature and mature dendritic cells.

View Article and Find Full Text PDF

We present an electrically actuated approach for creating a well-defined centered microparticle cluster within a sessile droplet on an interdigitated microelectrodes. The method is demonstrated with different aggregation shapes and particle types including biological cells for 3D microtissue development. AC voltage application induces particle levitation and enhanced-convection through accelerated evaporation.

View Article and Find Full Text PDF

Cell separation and patterning are of interest to several biological and medical applications including rare cell isolation and co-culture models. Numerous microfluidic devices have been used for cell separation and patterning, however, the typical closed channel configuration comes with challenges and limitations. Here, we report a dielectrophoresis (DEP) enabled microelectrofluidic probe (MeFP) for sequentially separating and patterning of mammalian cells in an open microfluidic system.

View Article and Find Full Text PDF