Publications by authors named "A Melchiori"

We constructed a single-chain variable fragment miniantibody (G11-scFv) directed toward the transactivation domain of c-Myc, which is fused with the internalization domain Int of Antennapedia at its carboxyl terminus (a cargo-carrier construct). In ELISA experiments, an EC(50) for binding saturation was achieved at concentrations of G11-scFv-Int(-) of approximately 10(-8) M. Internalization of a fluoresceinated Fl-G11-scFv-Int(+) construct was observed in intact human cultured cells with confocal microscopy.

View Article and Find Full Text PDF

Our work is focused in the broad area of strategies and efforts to inhibit protein-protein interactions. The possible strategies in this field are definitely much more varied than in the case of ATP-pocket inhibitors. In our previous work (10), we reported that a retro-inverso (RI) form of Helix1 (H1) of c-Myc, linked to an RI-internalization sequence arising from the third alpha-helix of Antennapedia (Int) was endowed with an antiproliferative and proapoptotic activity toward the cancer cell lines MCF-7 and HCT-116.

View Article and Find Full Text PDF

In 1998 we reported that an L-peptide derived from H1 of c-Myc (Int-H1-S6A,F8A), linked to an internalization sequence from the third a-helix of Antennapedia, was endowed with an antiproliferative and proapoptotic activity toward a human mammary cancer cell line: The activity apparently depends upon the presence of the Myc motif. In the present work we have added new dimensions to our original findings. It is known that short retro-inverso (RI-) peptides can assume a 3D conformation very close to their corresponding L-forms and can be recognized by the same monoclonal antibody.

View Article and Find Full Text PDF

The matrix metalloproteinase (MMP) inhibitor TIMP-2 has a high specificity for gelatinase A/MMP-2. An imbalance between gelatinase A and TIMP-2 in favor of enzymatic activity is linked to the degradation of the extracellular matrix (ECM) associated with several physiologic and pathologic events, including angiogenesis, invasion and metastasis. Since TIMPs are secreted molecules, they have the potential to be used for gene therapy of certain tumors.

View Article and Find Full Text PDF