The phenomenon of branched flow, visualized as a chaotic arborescent pattern of propagating particles, waves, or rays, has been identified in disparate physical systems ranging from electrons to tsunamis, with periodic systems only recently being added to this list. Here, we explore the laws governing the evolution of the branches in periodic potentials. On one hand, we observe that branch formation follows a similar pattern in all nonintegrable potentials, no matter whether the potentials are periodic or completely irregular.
View Article and Find Full Text PDFIn recent years, peptides have gained significant relevance due to their therapeutic properties. The surge in peptide production and synthesis has generated vast amounts of data, enabling the creation of comprehensive databases and information repositories. Advances in sequencing techniques and artificial intelligence have further accelerated the design of tailor-made peptides.
View Article and Find Full Text PDFObjective: This study aimed to identify the physicochemical and phenotypic characteristics of circulating Extracellular Vesicles (EVs) in the plasma of patients with SLE, with or without Lupus Nephritis (LN), and their potential utility as disease biomarkers.
Methods: Plasma-circulating EVs were concentrated using differential centrifugation from adult female patients (n=38) who met the 'American College of Rheumatology/European Alliance of Associations for Rheumatology 2019' criteria for SLE diagnosis with (LN) or without LN (nLN), confirmed by renal biopsy. Controls (n=18) were healthy volunteers matched by gender and similar age.