Publications by authors named "A Megias"

The paper presents exhaustive information on a dataset of primary processes held by Spanish political parties with representation at both the national and regional level. Using evidences collected from various sources, the dataset covers more than 360 processes carried out by more than 30 Spanish political parties between 1991 and 2023, at both the national and regional level and for both candidate and leadership selection processes The dataset provides information on the results of the ballots (Turnout, Share of the winner), some basic party features (Ideology, etc.) and the specific features of each process (Competitiveness, Voting procedures, etc.

View Article and Find Full Text PDF

The importance of roughness in the modeling of granular gases has been increasingly considered in recent years. In this paper, a freely evolving homogeneous granular gas of inelastic and rough hard disks or spheres is studied under the assumptions of the Boltzmann kinetic equation. The homogeneous cooling state is studied from a theoretical point of view using a Sonine approximation, in contrast to a previous Maxwellian approach.

View Article and Find Full Text PDF

We study a dilute granular gas immersed in a thermal bath made of smaller particles with masses not much smaller than the granular ones in this work. Granular particles are assumed to have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force plus a white-noise stochastic force.

View Article and Find Full Text PDF

Neurons receive synaptic input primarily onto their dendrites. While we know much about the electrical properties of dendrites in rodents, we have only just started to describe their properties in the human brain. Here, we investigate the capacity of human dendrites to generate NMDA-receptor-dependent spikes (NMDA spikes).

View Article and Find Full Text PDF

Loosely speaking, the Mpemba effect appears when hotter systems cool sooner or, in a more abstract way, when systems further from equilibrium relax faster. In this paper, we investigate the Mpemba effect in a molecular gas with nonlinear drag, both analytically (by employing the tools of kinetic theory) and numerically (direct simulation Monte Carlo of the kinetic equation and event-driven molecular dynamics). The analysis is carried out via two alternative routes, recently considered in the literature: first, the kinetic or thermal route, in which the Mpemba effect is characterized by the crossing of the evolution curves of the kinetic temperature (average kinetic energy), and, second, the stochastic thermodynamics or entropic route, in which the Mpemba effect is characterized by the crossing of the distance to equilibrium in probability space.

View Article and Find Full Text PDF