Abstract: In vitro semen purification techniques have been developed that seek to mimic the in vivo selection process in order to generate the highest possible chance of oocyte fertilization following artificial insemination. Numerous methods have been developed to isolate functional spermatozoa for artificial insemination, yet only one method, single-layer centrifugation using commercial preparations like EquiPure, has been widely employed. In this study, we have introduced a novel approach for isolating spermatozoa and compared their quality to those isolated using EquiPure.
View Article and Find Full Text PDFThis study aimed to determine whether an analysis of stallion ejaculate could accurately predict the likelihood of pregnancy resulting from artificial insemination in mares. This study involved 46 inseminations of 41 mares, using 7 standardbred stallions over a 5-week period at an Australian pacing stud. Semen quality was assessed immediately after collection and again after chilling at ~5 °C for 24 h.
View Article and Find Full Text PDFIn Brief: A capacity to predict the likelihood of pregnancy following natural matings would be of considerable benefit to the Thoroughbred horse breeding industry. In this article, we describe a strategy for achieving this outcome through the analysis of dismount samples, that achieved an overall accuracy of 94.6%.
View Article and Find Full Text PDFMTT is a commonly used cell vitality probe, due to its ability to form insoluble formazan deposits at cellular locations of intense oxidoreductase activity. Although this response is considered a reflection of mitochondrial redox activity, extra-mitochondrial sites of MTT reduction have been recognized within the spermatozoa of several mammalian species. Therefore, the aim of this study was to determine the major sites and causative mechanisms of MTT reduction in stallion spermatozoa.
View Article and Find Full Text PDFUnlabelled: Stallion sperm membranes comprise a high proportion of polyunsaturated fatty acids, making stallion spermatozoa especially vulnerable to peroxidative damage from reactive oxygen species generated as a by-product of cell metabolism. Membrane lipid replacement therapy with glycerophospholipid (GPL) mixtures has been shown to reduce oxidative damage and . The aims of this study were to test the effects of a commercial preparation of GPL, NTFactor Lipids, on stallion spermatozoa under oxidative stress.
View Article and Find Full Text PDF