Publications by authors named "A McKillop"

Molecular polaritons, hybrid light-matter states resulting from strong cavity coupling of optical transitions, may provide a new route to guide chemical reactions. However, demonstrations of cavity-modified reactivity in clean benchmark systems are still needed to clarify the mechanisms and scope of polariton chemistry. Here, we use transient absorption to observe the ultrafast dynamics of CN radicals interacting with a cyclohexane (-CH) and chloroform (CHCl) solvent mixture under vibrational strong coupling of a C-H stretching mode of CH.

View Article and Find Full Text PDF

Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. contains a sole SoxC protein, SEM-2.

View Article and Find Full Text PDF

Background: Early detection of cerebral palsy (CP) is possible through targeted use of assessment tools. Changes in practice are needed to facilitate this shift towards earlier diagnosis of CP in New Zealand. The aim of this study was to prospectively evaluate readiness to implement an early detection of CP pathway within a level 3 neonatal intensive care unit (NICU) setting prior to any implementation taking place.

View Article and Find Full Text PDF

G-protein coupled receptor-120 (GPR120; FFAR4) is a free fatty acid receptor, widely researched for its glucoregulatory and insulin release activities. This study aimed to investigate the metabolic advantage of FFAR4/GPR120 activation using combination therapy. C57BL/6 mice, fed a High Fat Diet (HFD) for 120 days to induce obesity-diabetes, were subsequently treated with a single daily oral dose of FFAR4/GPR120 agonist Compound A (CpdA) (0.

View Article and Find Full Text PDF

Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics.

View Article and Find Full Text PDF